Hybrid approach to relativistic Gaussian basis functions: Theory and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of subordination theory to starlike functions

Let $p$ be an analytic function defined on the open unit disc $mathbb{D}$ with $p(0)=1.$ The conditions on $alpha$ and $beta$ are derived for $p(z)$ to be subordinate to $1+4z/3+2z^{2}/3=:varphi_{C}(z)$ when $(1-alpha)p(z)+alpha p^{2}(z)+beta zp'(z)/p(z)$ is subordinate to $e^{z}$. Similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of Bernoulli $|w^{2}-1|=1$ ...

متن کامل

applications of subordination theory to starlike functions

let $p$ be an analytic function defined on the open unit disc $mathbb{d}$ with $p(0)=1.$ the conditions on $alpha$ and $beta$ are derived for $p(z)$ to be subordinate to $1+4z/3+2z^{2}/3=:varphi_{c}(z)$ when $(1-alpha)p(z)+alpha p^{2}(z)+beta zp'(z)/p(z)$ is subordinate to $e^{z}$. similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of bernoulli $|w^{2}-1...

متن کامل

Matching Heavy Particle Approach to Relativistic Theory

On the simple model of interacting massless and heavy scalar fields it is demonstrated that the technique of heavy baryon chiral perturbation theory reproduces the results of relativistic theory. Explicit calculations are performed for diagrams including two-loops. 03.70.+k 12.39.Fe, Typeset using REVTEX

متن کامل

Stable Computations with Gaussian Radial Basis Functions

Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...

متن کامل

Gaussian basis functions for solving differential equations

We derive approximate numerical solutions for an ordinary differential equation common in engineering using two different types of basis functions, polynomial and Gaussian, and a maximum discrepancy error measure. We compare speed and accuracy of the two solutions. The basic finding for our example is that while Gaussian basis functions can be used, the computational effort is greater than that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 1999

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.59.1187